Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar

نویسندگان

  • Siong Lee Yee
  • Pubudu N. Pathirana
  • Robin J. Evans
  • Christopher Louis Steinfort
چکیده

Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS), and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform) for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I : E ratio). This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System

Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional...

متن کامل

Harmonics Cancellation in Noncontact Microwave Doppler Radar Cardiopulmonary Sensing

This paper addresses the challenge of respiration harmonics cancellation in microwave Doppler radar cardiopulmonary sensing. A new signal processor based on adaptive noise cancellation is proposed. When the heartbeat signal is easily overwhelmed by the respiration harmonics, the traditional band-pass filters are used to separate heartbeat signal from the respiration signal, then the LMS-based m...

متن کامل

Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors ar...

متن کامل

روشی جدید برای تخمین همزمان تاخیر و داپلر از تابع ابهام: تلفیق فرآیندهای تصادفی و پردازش های مکانی برای حذف کلاتر و نویز

In this paper a new method is introduced for jointly delay and doppler estimation in ambiguity function based radars. In this method firstly each cell of ambiguity function is considered as a random variable, then an stochastic processes is estimated for each cell based on its value during consecutive radar scans. In the second step the ambiguity function is divided to high probability target a...

متن کامل

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sensors

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015